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Abstract
We derive a generalized Darcy’s law in the frequency domain for a linear
viscoelastic fluid flowing in a Hele-Shaw cell. This leads to an analytic
expression for the dynamic permeability that has maxima which are several
orders of magnitude larger than the static permeability. We then follow an
argument of de Gennes (1987 Europhys. Lett. 2 195) to obtain the smallest
possible finger width when viscoelasticity is important. Using this and a
conservation law, we obtain the lowest bound for the width of a single finger
displacing a viscoelastic fluid. When the driving force consists of a constant
pressure gradient plus an oscillatory signal, our results indicate that the finger
width varies in time following the frequency of the incident signal. Also, the
amplitude of the finger width in time depends on the value of the dynamic
permeability at the imposed frequency. When the finger is driven with a
frequency that maximizes the permeability, variations in the amplitude are
also maximized. This gives results that are very different for Newtonian and
viscoelastic fluids. For the former ones the amplitude of the oscillation decays
with frequency. For the latter ones on the other hand, the amplitude has maxima
at the same frequencies that maximize the dynamic permeability.

The viscous fingering problem has been historically very important in the area of morphology
of interfaces out of equilibrium [2] and has been a model system for describing displacement
of viscous fluids in porous media. The viscous fingering problem is based on the study of the
fluid interface in a two-phase flow confined in a Hele-Shaw cell [3] which consists of a pair
of glass plates parallel to each other separated by a small gap. A viscous fluid occupies the
space between the plates and it is pushed by a second fluid whose viscosity is relatively low.
When the fluid is pushed laterally, the experiment is said to take place in a linear cell. The
interface between the fluids is unstable and the structures that are formed when the interface
destabilizes are called fingers. This is the so-called Saffman–Taylor instability [4]. Recently,
viscous fingering experiments have been carried out with non-Newtonian fluids. Some of these
experiments have used clays [5], polymer solutions [6, 7] and lyotropic lamellar phases [8].
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Non-Newtonian fluids differ widely in their physical properties, with different fluids exhibiting
a range of different properties, from plasticity and elasticity to shear thickening and shear
thinning. Several studies have been made, both theoretically and experimentally, in order to
differentiate between the effects caused by different properties [1, 7, 9, 10]. Nevertheless, there
have been virtually no studies of the effect that a time varying driving force has on Saffman
fingers [11, 12].

In this paper we analyse the effect of frequency on the width of a single finger displacing
a viscoelastic fluid. To start, we derive a generalized Darcy’s law in the frequency domain for
a linear viscoelastic fluid flowing in a Hele-Shaw cell. This leads to an analytic expression for
the dynamic permeability that has maxima which are several orders of magnitude larger than
the static permeability. This is in agreement with results obtained for other geometries [13]
that have been confirmed experimentally [14]. We then follow an argument of de Gennes [1]
to obtain the smallest possible finger width when viscoelasticity is important. Using this, and
a conservation law, we obtain the lowest bound for the width of a single finger displacing
a viscoelastic fluid. When the driving force consists of a constant pressure gradient plus
an oscillatory signal, our results indicate that the finger width varies in time following the
frequency of the incident signal. Also the amplitude of the finger width in time depends on
the dynamic permeability. This implies that when the finger is driven with a frequency that
maximizes the permeability, variations in the amplitude are also maximized. For a fluid close
to the Newtonian limit, the amplitude decays with frequency. For a viscoelastic fluid on the
other hand, the amplitude will have maxima at the same frequencies that maximize the dynamic
permeability.

We start our study by taking a Maxwell fluid, which is the simplest model of a linear
viscoelastic fluid, and linearizing the equation governing the flow. In the frequency domain
this equation is

−ρ
(
trω

2 + iω
) �̂v − η∇2 �̂v = − (1 − iωtr) ∇ p̂. (1)

Here both the velocity �̂v and the pressure p̂ are in the frequency domain; that is, they are
functions of space and frequency. tr, η and ρ are respectively the relaxation time of the
Maxwell fluid and the viscosity and the density of the fluid. We solve (1) for a homogeneous
fluid flow in the x direction, confined between parallel plates at z = ±l subject to the boundary
conditions vx(±l) = 0. We obtain the velocity profile between the plates. In order to obtain a
generalized Darcy’s law, we average over the z direction and obtain for the average flow

〈v̂〉 = − K (ω)

η
∇ p̂, (2)

where K (ω) is the dynamic permeability given by

K (ω) = −
(

1 − tan
√

βl√
βl

)
(1 − iωtr)

β
(3)

and β(ω) = ρ(trω2+iω)

η
. This generalized Darcy’s law is an equation in the frequency domain.

We have verified that when the pressure gradient consists of a single Fourier mode for which
ω → 0, we recover the steady state Darcy’s law in the time domain. On the other hand, it is
worth emphasizing that the limit tr → 0 is the limit of a Newtonian fluid.

Figure 1 shows the real part of the normalized permeability K (ω)/K (0) versus the
frequency for both a Maxwell fluid and a Newtonian fluid. The figure shows that for a
Newtonian fluid the permeability is a monotonically decreasing function of frequency. For a
Maxwell fluid on the other hand, there are frequencies for which there are resonances which
give peaks for the permeability. For typical values of the density, viscosity, plate spacing and
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Figure 1. Dimensionless dynamic permeability versus frequency. The continuous curve is for
a viscoelastic fluid with a relaxation time tr = 6 s, the dotted curve for a Newtonian fluid. For
both curves the viscosity η = 0.7 P, the density ρ = 1 g cm−3 and the spacing between the plates
L = 1 mm.

relaxation time in the standard literature on Hele-Shaw problems, we find that this permeability
can be two or three orders of magnitude larger than the Newtonian permeability; this is because
the behaviour of the flow at such frequencies is dominated by the elastic properties of the fluid.
What this result means is that if we displace the viscous fluid at the frequency that maximizes
the permeability, the fluid will flow with the least possible resistance.

Figure 2 shows how the first maximum of the real part of the permeability shifts toward
higher frequencies when the viscosity is increased. So, the more viscous the fluid, the higher
the frequency that maximizes the dynamic permeability.

We now analyse the problem of a negligible viscosity fluid displacing a high viscosity
viscoelastic fluid in a Hele-Shaw cell of width W—that is, the problem of the Saffman finger
in the limit of infinite viscosity contrast. In particular, we analyse the case of a single finger
propagating into the viscous fluid with a time dependent velocity U(t). We call λ(t)W the
finger width. It is worth emphasizing that we are not considering a steady state. Both U and
λ depend on time.

The quantity U/(λW ) gives a characteristic frequency. The viscoelastic fluid has a
characteristic time tr which in the case of a Maxwell fluid is given by tr = η/G, G being
the rigidity modulus of the viscous fluid. When U/(λW ) > 1/tr the viscoelastic fluid behaves
like a solid and there is no Saffman–Taylor instability. The allowed wavelengths should all
correspond to U/(λW ) < 1/tr [1]. Therefore, the smallest possible finger width should be
such that

U(t)

λ(t)W
= 1

tr
. (4)

Conservation of matter implies that

U(t)λ(t) = V∞(t). (5)

Here V∞(t) is the fluid velocity very far from the finger tip. From equations (4) and (5) we
can relate the finger width λ(t) and the tip velocity U(t) to the velocity at the extreme of the
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Figure 2. The effect of viscosity on the dimensionless dynamic permeability for a viscoelastic
fluid. For the dotted curve the viscosity η = 0.6 P; for the continuous curve the viscosity η = 1 P.
For both curves the density ρ = 1 g cm−3, the spacing between the plates L = 1 mm and the
relaxation time tr = 0.6 s.

cell V∞(t) as

λ2(t) = tr
W

V∞(t) (6)

and

U 2(t) = W

tr
V∞(t). (7)

Experimentally, the parameter that can be controlled is the pressure difference at the
extremes of the cell. So, given ∇ p(t), we can make the following calculations:

∇ p(t) −→
Fourier transform

∇ p̂(ω),

∇ p̂(ω) −→
Darcy’s law in frequency domain

V̂∞(ω),

V̂∞(ω) −→
Inverse FT

V∞(t),

V∞(t) −→ λ(t), U(t).

In order for fingers to exist, the pressure gradient should be at any moment negative.
Simple oscillatory signals are not possible since the instability will exist for only half of the
period. So we are thinking, for example, of signals superimposed on pressure gradients that
are large enough to destabilize the interface.

We consider the simple case of an oscillatory finger. Suppose we impose a pressure
gradient of the form

∇ p(t) = ∇ p0 + ∇ pae−iω0t , (8)

that is, a constant pressure gradient ∇ p0 plus an oscillatory signal of frequency ω0. ∇ pa is
the amplitude of the oscillatory signal. We obtain the following expressions for the different
steps presented above:

∇ p̂(ω) = √
2π∇ p0δ(ω) +

√
2π∇ paδ(ω − ω0) (9)
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V̂∞(ω) = −
√

2π

η
K (ω) [∇ p0δ(ω) + ∇ paδ(ω − ω0)] (10)

V∞(t) = −∇ p0

η
K (0) − ∇ pa

η
K (ω0)e−iω0 t . (11)

Now, for the steady state we know that

V ss
∞ = −∇ p0

η
K (0) (12)

and we can express the results as

V∞(t) = V ss
∞

[
1 +

∇ pa

∇ p0

K (ω0)

K (0)
e−iω0t

]
, (13)

λ2(t) = λ2
ss

[
1 +

∇ pa

∇ p0

K (ω0)

K (0)
e−iω0 t

]
, (14)

U 2(t) = U 2
ss

[
1 +

∇ pa

∇ p0

K (ω0)

K (0)
e−iω0 t

]
. (15)

Here λss and Uss are defined in terms of V ss∞ through (6) and (7). What it is interesting to
note is that the behaviour is totally different for viscous fluids in the Newtonian limit and
for viscoelastic fluids. We focus our attention on the amplitude of the oscillatory term in
equation (14). The same applies to equations (13) and (15). For fluids close to the Newtonian
limit, the ratio K (ω0)

K (0)
decays with frequency. Also it is always smaller than or equal to one. This

implies that variations in the width of the finger are small. On the other hand, for viscoelastic
fluids, the ratio K (ω0)

K (0)
does not have a monotonic behaviour as a function of ω as can be seen

from the figures. It can be several orders of magnitude larger than in the Newtonian case.
Therefore, if the imposed signal has a frequency ω0 for which the dynamic permeability has a
maximum, the amplitude will also have a maximum and the time variations of the finger width
will be very large.

A word of caution is needed, since when one does not consider surface tension the finger
width and the velocity at the finger tip are not independent. It is worth noticing that since
the surface tension has a stabilizing effect for small wavelengths any consideration of surface
tension would give fingers wider than or equal in width to the lowest bound reported in the
present work. In order to solve the finite surface tension problem, the method in [4, 15] should
be considered.

Recently a phase field model has been developed to study the classical viscous fingering
problem in the infinite viscosity contrast limit [16]—that is, the case when a zero-viscosity
fluid pushes a high viscosity Newtonian fluid. Such a model allows for a numerical simulation
of a finger driven by a time dependent pressure gradient [12]. Simulation results show that
close to the finger tip, the finger width oscillates in time with a frequency that follows the
frequency of the incident signal. This is in agreement with equation (14). Simulations also
predict that the amplitude of the oscillation decays monotonically with frequency. This is in
agreement with equation (14) when the Newtonian limit tr → 0 is taken in equation (3). These
results for the Newtonian case partially confirm the theory presented here.
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